The Cytolethal Distending Toxin Produced by Nontyphoidal Salmonella Serotypes Javiana, Montevideo, Oranienburg, and Mississippi Induces DNA Damage in a Manner Similar to That of Serotype Typhi

Author:

Miller Rachel A.1,Wiedmann Martin1

Affiliation:

1. Department of Food Science, Cornell University, Ithaca, New York, USA

Abstract

ABSTRACT Select nontyphoidal Salmonella enterica (NTS) serotypes were recently found to encode the Salmonella cytolethal distending toxin (S-CDT), an important virulence factor for serotype Typhi, the causative agent of typhoid fever. Using a PCR-based assay, we determined that among 21 NTS serotypes causing the majority of food-borne salmonellosis cases in the United States, genes encoding S-CDT are conserved in isolates representing serotypes Javiana, Montevideo, and Oranienburg but that among serotype Mississippi isolates, the presence of S-CDT-encoding genes is clade associated. HeLa cells infected with representative strains of these S-CDT-positive serotypes had a significantly higher proportion of cells arrested in the G 2 /M phase than HeLa cells infected with representative strains of S-CDT-negative serotypes Typhimurium, Newport, and Enteritidis. The G 2 /M cell cycle arrest was dependent on CdtB, the active subunit of S-CDT, as infection with isogenic Δ cdtB mutants abolished their ability to induce a G 2 /M cell cycle arrest. Infection with S-CDT-encoding serotypes was significantly associated with activation of the host cell’s DNA damage response (DDR), a signaling cascade that is important for detecting and repairing damaged DNA. HeLa cell populations infected with S-CDT-positive serotypes had a significantly higher proportion of cells with DDR protein 53BP1 and γH2AX foci than cells infected with either S-CDT-negative serotypes or isogenic Δ cdtB strains. Intoxication with S-CDT occurred via autocrine and paracrine pathways, as uninfected HeLa cells among populations of infected cells also had an activated DDR. Overall, we show that S-CDT plays a significant role in the cellular outcome of infection with NTS serotypes. IMPORTANCE The recent discovery that multiple serotypes encode S-CDT, which was previously established as an important virulence factor for serotype Typhi, suggested that this toxin may also contribute to the outcome of infection with nontyphoidal serotypes. In this study, we demonstrate that at a cellular level, S-CDT significantly alters the outcome of infection by inducing DNA damage which is associated with a cell cycle arrest and activation of the host cell’s DDR. Importantly, these results contribute valuable information for assessing the public health implications of S-CDT in infections with NTS serotypes. Our data suggest that infection with Salmonella strains that encode S-CDT has the potential to result in DNA damage, which may contribute to long-term sequelae.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3