Intestinal Epithelium-Specific MyD88 Signaling Impacts Host Susceptibility to Infectious Colitis by Promoting Protective Goblet Cell and Antimicrobial Responses

Author:

Bhinder Ganive1,Stahl Martin1,Sham Ho Pan1,Crowley Shauna M.1,Morampudi Vijay1,Dalwadi Udit1,Ma Caixia1,Jacobson Kevan1,Vallance Bruce A.1

Affiliation:

1. Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

ABSTRACT Intestinal epithelial cells (IECs), including secretory goblet cells, form essential physiochemical barriers that separate luminal bacteria from underlying immune cells in the intestinal mucosa. IECs are common targets for enteric bacterial pathogens, with hosts responding to these microbes through innate toll-like receptors that predominantly signal through the MyD88 adaptor protein. In fact, MyD88 signaling confers protection against several enteric bacterial pathogens, including Salmonella enterica serovar Typhimurium and Citrobacter rodentium . Since IECs are considered innately hyporesponsive, it is unclear whether MyD88 signaling within IECs contributes to this protection. We infected mice lacking MyD88 solely in their IECs ( IEC-Myd88 −/− ) with S. Typhimurium. Compared to wild-type (WT) mice, infected IEC-Myd88 −/− mice suffered accelerated tissue damage, exaggerated barrier disruption, and impaired goblet cell responses (Muc2 and RELMβ). Immunostaining revealed S. Typhimurium penetrated the IECs of IEC-Myd88 −/− mice, unlike in WT mice, where they were sequestered to the lumen. When isolated crypts were assayed for their antimicrobial actions, crypts from IEC-Myd88 −/− mice were severely impaired in their antimicrobial activity against S. Typhimurium. We also examined whether MyD88 signaling in IECs impacted host defense against C. rodentium , with IEC-Myd88 −/− mice again suffering exaggerated tissue damage, impaired goblet cell responses, and reduced antimicrobial activity against C. rodentium . These results demonstrate that MyD88 signaling within IECs plays an important protective role at early stages of infection, influencing host susceptibility to infection by controlling the ability of the pathogen to reach and survive at the intestinal mucosal surface.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3