Effect of Disruption of a Gene Encoding an Autolysin of Enterococcus faecalis OG1RF

Author:

Qin Xiang123,Singh Kavindra V.13,Xu Yi43,Weinstock George M.23,Murray Barbara E.123

Affiliation:

1. Division of Infectious Diseases, Department of Medicine,1

2. Department of Microbiology and Molecular Genetics,2 and

3. Center for the Study of Emerging and Re-emerging Pathogens,3University of Texas Medical School, Houston, Texas 77030

4. Department of Biochemistry and Molecular Biology,4

Abstract

ABSTRACT A mutant (TX5127) of Enterococcus faecalis OG1RF was generated by disruption mutagenesis of a previously described autolysin gene. TX5127 formed longer chains (2 to 10 cells per chain) than wild-type OG1RF (mainly single cells) during growth in broth even though it had a growth rate similar to that of the parental strain as measured by turbidity and cell count. Autolysin activity, as defined by the ability to lyse heat-killed Micrococcus lysodeikticus cells, was absent in TX5127, while this activity was easily detectable in OG1RF. However, disruption of this autolysin gene did not block the ability of TX5127 to hydrolyze E. faecalis cell walls compared to that of OG1RF. The autolysis rate of cells of TX5127 in 10 mM sodium phosphate buffer (pH 6.8) was slower than that of wild-type OG1RF. TX5127 also showed a decreased rate of lysis in the presence of penicillin, as measured by changes in the turbidity of the culture during 24 h of incubation at 37°C and a slightly decreased effect of penicillin as measured by time-kill curves. The virulence of TX5127 was similar to that of OG1RF in the mouse peritonitis model, indicating that the autolysin of E. faecalis is not important for infection in this model.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3