Abstract
AbstractControl of cell size and morphology is of paramount importance for bacterial fitness. In the opportunistic pathogen Enterococcus faecalis, the formation of diplococci and short cell chains facilitates innate immune evasion and dissemination in the host. Minimisation of cell chain size relies on the activity of a peptidoglycan hydrolase called AtlA, dedicated to septum cleavage. To prevent autolysis, AtlA activity is tightly controlled, both temporally and spatially. Here, we show that the restricted localization of AtlA at the septum occurs via an unexpected mechanism. We demonstrate that the C-terminal LysM domain that allows the enzyme to bind peptidoglycan is essential to target this enzyme to the septum inside the cell before its translocation across the membrane. We identify a membrane-bound cytoplasmic protein partner (called AdmA) involved in the recruitment of AtlA via its LysM domains. This work reveals a moonlighting role for LysM domains, and a mechanism evolved to restrict the subcellular localization of a potentially lethal autolysin to its site of action.
Funder
RCUK | Biotechnology and Biological Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献