Affiliation:
1. Neurological Surgery1and
2. Infectious Diseases,2 University Hospitals Basel, 4031 Basel, Switzerland
Abstract
ABSTRACT
Antimicrobial therapy for brain infections is notoriously difficult because of the limited extent of knowledge about drug penetration into the brain. Therefore, we determined the penetration of rifampin into various compartments of the human brain, including the cerebral extracellular space (CES). Patients undergoing craniotomy for resection of primary brain tumors were given a standard dose of 600 mg of rifampin intravenously before the operation. A microdialysis probe (10 by 0.5 mm) was inserted into the cortex distantly from the resection and was perfused with two different rifampin solutions. Rifampin concentrations in the CES were calculated by the no-net-flux method. Intraoperatively, samples were taken from brain tumor tissue, perifocal tissue, and normal brain tissue in the case of pole resections. Rifampin concentrations in the various samples were determined by using a bioassay with
Sarcinea lutea
. In the various compartments, rifampin concentrations were highest within tumors (1.37 ± 1.34 μg/ml;
n
= 8), followed by the perifocal region (0.62 ± 0.67 μg/ml;
n
= 8), the CES (0.32 ± 0.11 μg/ml;
n
= 6), and normal brain tissue (0.29 ± 0.15 μg/ml;
n
= 7). Rifampin concentrations in brain tumors do not adequately reflect concentrations in normal brain tissue or in the CES. Rifampin concentrations in the CES, as determined by microdialysis, are the most reproducible, and the least scattered, of the values for all compartments evaluated. Rifampin concentrations in all compartments exceed the MIC for staphylococci and streptococci. However, CES concentrations may be below the MICs for some mycobacterial strains.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献