Affiliation:
1. Chemical Engineering and Process Development Division Council of Scientific and Industrial Research‐National Chemical Laboratory Pune India
2. Academy of Scientific and Innovative Research, Council Of Scientific And Industrial Research–Human Resource Development Centre Campus Ghaziabad India
3. Council of Scientific and Industrial Research‐Institute of Genomics and Integrative Biology Delhi India
Abstract
AbstractTuberculosis (TB) is a leading cause of mortality attributed to an infectious agent. TB primarily targets the lungs, but in about 16% cases can affect other organs as well, giving rise to extrapulmonary TB (EPTB). However, an optimal regimen for EPTB treatment is not defined. Although the recommended treatment for most forms of EPTB is the same as pulmonary TB, the pharmacokinetics of EPTB therapy are not as well studied. To address this gap, we formulate a whole‐body physiologically‐based pharmacokinetic (PBPK) model for EPTB that for the first time includes the ability to simulate drug concentrations in the pleura and lymph node, the most commonly affected sites of EPTB. Using this model, we estimate the time‐dependent concentrations, at potential EPTB infection sites, of the following four first‐line anti‐TB drugs: rifampicin, ethambutol, isoniazid, and pyrazinamide. We use reported plasma concentration kinetics data to estimate model parameters for each drug and validate our model using reported concentration data not used for model formulation or parameter estimation. Model predictions match the validation data, and reported pharmacokinetic parameters (maximum plasma concentration, time to reach maximum concentration) for the drugs. The model also predicts ethambutol, isoniazid, and pyrazinamide concentrations in the pleura that match reported experimental values from an independent study. For each drug, the predicted drug concentrations at EPTB sites are compared with their critical concentration. Simulations suggest that although rifampicin and isoniazid concentrations are greater than critical concentration values at most EPTB sites, the concentrations of ethambutol and pyrazinamide are lower than their critical concentrations at most EPTB sites.
Subject
Pharmacology (medical),Modeling and Simulation
Reference50 articles.
1. Tuberculosis
2. World Health Organization.Global tuberculosis report 2020.2020Published online.
3. World Health Organization.Global tuberculosis report 2022. World Health Organization2022.
4. Reactivation of latent tuberculosis in a COVID-19 patient on corticosteroid treatment
5. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献