DNA Gyrase and Topoisomerase IV Are Dual Targets of Clinafloxacin Action in Streptococcus pneumoniae

Author:

Pan Xiao-Su1,Fisher L. Mark1

Affiliation:

1. Molecular Genetics Group, Department of Biochemistry, St. George’s Hospital Medical School, University of London, London SW17 ORE, United Kingdom

Abstract

ABSTRACT We examined the response of Streptococcus pneumoniae 7785 to clinafloxacin, a novel C-8-substituted fluoroquinolone which is being developed as an antipneumococcal agent. Clinafloxacin was highly active against S. pneumoniae 7785 (MIC, 0.125 μg/ml), and neither gyrA nor parC quinolone resistance mutations alone had much effect on this activity. A combination of both mutations was needed to register resistance, suggesting that both gyrase and topoisomerase IV are clinafloxacin targets in vivo. The sparfloxacin and ciprofloxacin MICs for the parC-gyrA mutants were 16 to 32 and 32 to 64 μg/ml, respectively, but the clinafloxacin MIC was 1 μg/ml, i.e., within clinafloxacin levels achievable in human serum. S. pneumoniae 7785 mutants could be selected stepwise with clinafloxacin at a low frequency, yielding first-, second-, third-, and fourth-step mutants for which clinafloxacin MICs were 0.25, 1, 6, and 32 to 64 μg/ml, respectively. Thus, high-level resistance to clinafloxacin required four steps. Characterization of the quinolone resistance-determining regions of the gyrA , parC , gyrB , and parE genes by PCR, Hin fI restriction fragment length polymorphism, and DNA sequence analysis revealed an invariant resistance pathway involving sequential mutations in gyrA or gyrB , in parC , in gyrA , and finally in parC or parE . No evidence was found for other resistance mechanisms. The gyrA mutations in first- and third-step mutants altered GyrA hot spots Ser-83 to Phe or Tyr ( Escherichia coli coordinates) and Glu-87 to Gln or Lys; second- and fourth-step parC mutations changed equivalent hot spots Ser-79 to Phe or Tyr and Asp-83 to Ala. gyrB and parE changes produced novel alterations of GyrB Glu-474 to Lys and of Pro-454 to Ser in the ParE PLRGK motif. Difficulty in selecting first-step gyrase mutants (isolated with 0.125 [but not 0.25] μg of clinafloxacin per ml at a frequency of 5.0 × 10 −10 to 8.5 × 10 −10 ) accompanied by the small (twofold) MIC increase suggested only a modest drug preference for gyrase. Given the susceptibility of defined gyrA or parC mutants, the results suggested that clinafloxacin displays comparable if unequal targeting of gyrase and topoisomerase IV. Dual targeting and the intrinsic potency of clinafloxacin against S. pneumoniae and its first- and second-step mutants are desirable features in limiting the emergence of bacterial resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3