Characterization of a Coxiella burnetii ftsZ Mutant Generated by Himar1 Transposon Mutagenesis

Author:

Beare Paul A.1,Howe Dale1,Cockrell Diane C.1,Omsland Anders1,Hansen Bryan2,Heinzen Robert A.1

Affiliation:

1. Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites

2. Electron Microscopy Facility, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840

Abstract

ABSTRACT Coxiella burnetii is a gram-negative obligate intracellular bacterium and the causative agent of human Q fever. The lack of methods to genetically manipulate C. burnetii significantly impedes the study of this organism. We describe here the cloning and characterization of a C. burnetii ftsZ mutant generated by mariner -based Himar1 transposon (Tn) mutagenesis. C. burnetii was coelectroporated with a plasmid encoding the Himar1 C9 transposase variant and a plasmid containing a Himar1 transposon encoding chloramphenicol acetyltransferase, mCherry fluorescent protein, and a ColE1 origin of replication. Vero cells were infected with electroporated C. burnetii and transformants scored as organisms replicating in the presence of chloramphenicol and expressing mCherry. Southern blot analysis revealed multiple transpositions in the C. burnetii genome and rescue cloning identified 30 and 5 insertions in coding and noncoding regions, respectively. Using micromanipulation, a C. burnetii clone was isolated containing a Tn insertion within the C terminus of the cell division gene ftsZ . The ftsZ mutant had a significantly lower growth rate than wild-type bacteria and frequently appeared as filamentous forms displaying incomplete cell division septa. The latter phenotype correlated with a deficiency in generating infectious foci on a per-genome basis compared to wild-type organisms. The mutant FtsZ protein was also unable to bind the essential cell division protein FtsA. This is the first description of C. burnetii harboring a defined gene mutation generated by genetic transformation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3