Coxiella burnetii-containing vacuoles interact with host recycling endosomal proteins Rab11a and Rab35 for vacuolar expansion and bacterial growth

Author:

Hall Brooke A.,Senior Kristen E.,Ocampo Nicolle T.,Samanta Dhritiman

Abstract

IntroductionCoxiella burnetii is a gram-negative obligate intracellular bacterium and a zoonotic pathogen that causes human Q fever. The lack of effective antibiotics and a licensed vaccine for Coxiella in the U.S. warrants further research into Coxiella pathogenesis. Within the host cells, Coxiella replicates in an acidic phagolysosome-like vacuole termed Coxiella-containing vacuole (CCV). Previously, we have shown that the CCV pH is critical for Coxiella survival and that the Coxiella Type 4B secretion system regulates CCV pH by inhibiting the host endosomal maturation pathway. However, the trafficking pattern of the ‘immature’ endosomes in Coxiella- infected cells remained unclear.MethodsWe transfected HeLa cells with GFP-tagged Rab proteins and subsequently infected them with mCherry-Coxiella to visualize Rab protein localization. Infected cells were immunostained with anti-Rab antibodies to confirm the Rab localization to the CCV, to quantitate Rab11a and Rab35- positive CCVs, and to quantitate total recycling endosome content of infected cells. A dual-hit siRNA mediated knockdown combined with either immunofluorescent assay or an agarose-based colony-forming unit assay were used to measure the effects of Rab11a and Rab35 knockdown on CCV area and Coxiella intracellular growth.ResultsThe CCV localization screen with host Rab proteins revealed that recycling endosome-associated proteins Rab11a and Rab35 localize to the CCV during infection, suggesting that CCV interacts with host recycling endosomes during maturation. Interestingly, only a subset of CCVs were Rab11a or Rab35-positive at any given time point. Quantitation of Rab11a/Rab35-positive CCVs revealed that while Rab11a interacts with the CCV more at 3 dpi, Rab35 is significantly more prevalent at CCVs at 6 dpi, suggesting that the CCV preferentially interacts with Rab11a and Rab35 depending on the stage of infection. Furthermore, we observed a significant increase in Rab11a and Rab35 fluorescent intensity in Coxiella-infected cells compared to mock, suggesting that Coxiella increases the recycling endosome content in infected cells. Finally, siRNA-mediated knockdown of Rab11a and Rab35 resulted in significantly smaller CCVs and reduced Coxiella intracellular growth, suggesting that recycling endosomal Rab proteins are essential for CCV expansion and bacterial multiplication.DiscussionOur data, for the first time, show that the CCV dynamically interacts with host recycling endosomes for Coxiella intracellular survival and potentially uncovers novel host cell factors essential for Coxiella pathogenesis.

Funder

Midwestern University

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3