Attenuated Virulence and Biofilm Formation in Staphylococcus aureus following Sublethal Exposure to Triclosan

Author:

Latimer Joe,Forbes Sarah,McBain Andrew J.

Abstract

ABSTRACTSubeffective exposure ofStaphylococcus aureusto the biocide triclosan can reportedly induce a small-colony variant (SCV) phenotype.S. aureusSCVs are characterized by low growth rates, reduced pigmentation, and lowered antimicrobial susceptibility. While they may exhibit enhanced intracellular survival, there are conflicting reports regarding their pathogenicity. The current study reports the characteristics of an SCV-like strain ofS. aureuscreated by repeated passage on sublethal triclosan concentrations.S. aureusATCC 6538 (the passage 0 [P0] strain) was serially exposed 10 times to concentration gradients of triclosan to generate strain P10. This strain was then further passaged 10 times on triclosan-free medium (designated strain ×10). The MICs and minimum bactericidal concentrations of triclosan for P0, P10, and ×10 were determined, and growth rates in biofilm and planktonic cultures were measured. Hemolysin, DNase, and coagulase activities were measured, and virulence was determined using aGalleria mellonellapathogenicity model. Strain P10 exhibited decreased susceptibility to triclosan and characteristics of an SCV phenotype, including a considerably reduced growth rate and the formation of pinpoint colonies. However, this strain also had delayed coagulase production, had impaired hemolysis (P< 0.01), was defective in biofilm formation and DNase activity, and displayed significantly attenuated virulence. Colony size, hemolysis, coagulase activity, and virulence were only partially restored in strain ×10, whereas the planktonic growth rate was fully restored. However, ×10 was at least as defective in biofilm formation and DNase production as P10. These data suggest that although repeated exposure to triclosan may result in an SCV-like phenotype, this is not necessarily associated with increased virulence and adapted bacteria may exhibit other functional deficiencies.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3