The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks

Author:

Reed Mark L.1,Bridges Olga A.1,Seiler Patrick1,Kim Jeong-Ki1,Yen Hui-Ling1,Salomon Rachelle1,Govorkova Elena A.1,Webster Robert G.1,Russell Charles J.12

Affiliation:

1. Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678

2. Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163

Abstract

ABSTRACT While the molecular mechanism of membrane fusion by the influenza virus hemagglutinin (HA) protein has been studied extensively in vitro , the role of acid-dependent HA protein activation in virus replication, pathogenesis, and transmission in vivo has not been characterized. To investigate the biological significance of the pH of activation of the HA protein, we compared the properties of four recombinant viruses with altered HA protein acid stability to those of wild-type influenza virus A/chicken/Vietnam/C58/04 (H5N1) in vitro and in mallards. Membrane fusion by wild-type virus was activated at pH 5.9. Wild-type virus had a calculated environmental persistence of 62 days and caused extensive morbidity, mortality, shedding, and transmission in mallards. An N114K mutation that increased the pH of HA activation by 0.5 unit resulted in decreased replication, genetic stability, and environmental stability. Changes of +0.4 and −0.5 unit in the pH of activation by Y23H and K58I mutations, respectively, reduced weight loss, mortality, shedding, and transmission in mallards. An H24Q mutation that decreased the pH of activation by 0.3 unit resulted in weight loss, mortality, clinical symptoms, and shedding similar to those of the wild type. However, the HA-H24 1 Q virus was shed more extensively into drinking water and persisted longer in the environment. The pH of activation of the H5 HA protein plays a key role in the propagation of H5N1 influenza viruses in ducks and may be a novel molecular factor in the ecology of influenza viruses. The data also demonstrate that H5N1 neuraminidase activity increases the pH of activation of the HA protein in vitro .

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3