Yarrowia lipolytica Mutants Devoid of Pyruvate Carboxylase Activity Show an Unusual Growth Phenotype

Author:

Flores Carmen-Lisset1,Gancedo Carlos1

Affiliation:

1. Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-Universidad Autónoma de Madrid, Madrid, Spain

Abstract

ABSTRACT We have cloned and characterized the gene PYC1 , encoding the unique pyruvate carboxylase in the dimorphic yeast Yarrowia lipolytica . The protein putatively encoded by the cDNA has a length of 1,192 amino acids and shows around 70% identity with pyruvate carboxylases from other organisms. The corresponding genomic DNA possesses an intron of 269 bp located 133 bp downstream of the starting ATG. In the branch motif of the intron, the sequence CCCTAAC, not previously found at this place in spliceosomal introns of Y. lipolytica , was uncovered. Disruption of the PYC1 gene from Y. lipolytica did not abolish growth in glucose-ammonium medium, as is the case in other eukaryotic microorganisms. This unusual growth phenotype was due to an incomplete glucose repression of the function of the glyoxylate cycle, as shown by the lack of growth in that medium of double pyc1 icl1 mutants lacking both pyruvate carboxylase and isocitrate lyase activity. These mutants grew when glutamate, aspartate, or Casamino Acids were added to the glucose-ammonium medium. The cDNA from the Y. lipolytica PYC1 gene complemented the growth defect of a Saccharomyces cerevisiae pyc1 pyc2 mutant, but introduction of either the S. cerevisiae PYC1 or PYC2 gene into Y. lipolytica did not result in detectable pyruvate carboxylase activity or in growth on glucose-ammonium of a Y. lipolytica pyc1 icl1 double mutant.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Reference60 articles.

1. Amor, C., A. I. Domínguez, J. R. De Lucas, and F. Laborda. 2000. The catabolite inactivation of Aspergillus nidulans isocitrate lyase occurs by specific autophagy of peroxisomes. Arch. Microbiol.174:59-66.

2. Evolutionary relationships among pathogenic Candida species and relatives

3. Barth, G., and C. Gaillardin. 1997. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol. Rev.19:219-237.

4. Barth, G., and C. Gaillardin. 1996. Yarrowia lipolytica, p. 313-388. In K. Wolf (ed.), Nonconventional yeasts in biotechnology. a handbook. Springer Verlag, Berlin, Germany.

5. Barth, G., and T. Scheuber. 1993. Cloning of the isocitrate lyase gene (ICL1) from Yarrowia lipolytica and characterization of the deduced protein. Mol. Gen. Genet.241:422-430.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3