Affiliation:
1. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA.
Abstract
Glycogen, a branched polymer of glucose, is a storage molecule whose accumulation is under rigorous nutritional control in many cells. We report the identification of two Saccharomyces cerevisiae genes, GLG1 and GLG2, whose products are implicated in the biogenesis of glycogen. These genes encode self-glucosylating proteins that in vitro can act as primers for the elongation reaction catalyzed by glycogen synthase. Over a region of 258 residues, the Glg proteins have 55% sequence identify to each other and approximately 33% identity to glycogenin, a mammalian protein postulated to have a role in the initiation of glycogen biosynthesis. Yeast cells defective in either GLG1 or GLG2 are similar to the wild type in their ability to accumulate glycogen. Disruption of both genes results in the inability of the cells to synthesize glycogen despite normal levels of glycogen synthase. These results suggest that a self-glucosylating protein is required for glycogen biosynthesis in a eukaryotic cell. The activation state of glycogen synthase in glg1 glg2 cells is suppressed, suggesting that the Glg proteins may additionally influence the phosphorylation state of glycogen synthase.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献