Affiliation:
1. The Kimmel Center for Biology and Medicine of the Skirball Institute
2. Departments of Pathology and Microbiology, New York University School of Medicine, New York, New York 10016
3. Howard Hughes Medical Institute
Abstract
ABSTRACT
Apobec proteins are a family of cellular cytidine deaminases, among which several members have been shown to have potent antiviral properties. This antiviral activity is associated with the ability to cause hypermutation of retroviral cDNA. However, recent research has indicated that Apobec proteins are also able to inhibit retroviruses by other mechanisms that are independent of their deaminase activity. We have compared the antiviral activities of human and murine Apobec3 (A3) proteins, and we have found that, consistent with previous reports, human immunodeficiency virus (HIV) is able to resist human A3G but is sensitive to murine A3, whereas murine leukemia virus (MLV) is relatively resistant to murine A3 (mA3) but sensitive to human A3G. In contrast to previous studies, we observed that mA3 is packaged efficiently into MLV particles. The C-terminal cytidine deaminase domain (CDD2) is required for packaging of mA3 into MLV particles, and packaging did not depend on the MLV viral RNA. However, mA3 packed into MLV particles failed to cause hypermutation of viral DNA, indicating that its deaminase activity is blocked or inhibited. hA3G also caused significantly less hypermutation of MLV than of HIV DNA. Both mA3 and the splice variant mA3Δ5 exhibited some residual antiviral activity against MLV and caused a reduction in the ability of MLV particles to generate reverse transcription products. These results suggest that MLV has evolved specific mechanisms to block the ability of Apobec proteins to mediate deaminase-dependent hypermutation.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference34 articles.
1. Abudu, A., A. Takaori-Kondo, T. Izumi, K. Shirakawa, M. Kobayashi, A. Sasada, K. Fukunaga, and T. Uchiyama. 2006. Murine retrovirus escapes from murine APOBEC3 via two distinct novel mechanisms. Curr. Biol.16:1565-1570.
2. Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination
3. Bishop, K. N., R. K. Holmes, A. M. Sheehy, N. O. Davidson, S. J. Cho, and M. H. Malim. 2004. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr. Biol.14:1392-1396.
4. Chen, H., C. E. Lilley, Q. Yu, D. V. Lee, J. Chou, I. Narvaiza, N. R. Landau, and M. D. Weitzman. 2006. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr. Biol.16:480-485.
5. Chiu, Y. L., and W. C. Greene. 2006. Multifaceted antiviral actions of APOBEC3 cytidine deaminases. Trends Immunol.27:291-297.
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献