Role of Interferon Antagonist Activity of Rabies Virus Phosphoprotein in Viral Pathogenicity

Author:

Ito Naoto12,Moseley Gregory W.3,Blondel Danielle4,Shimizu Kenta2,Rowe Caitlin L.3,Ito Yuki2,Masatani Tatsunori2,Nakagawa Keisuke2,Jans David A.3,Sugiyama Makoto12

Affiliation:

1. Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences

2. the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

3. Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia

4. Unité de Virologie Moléculaire et Structurale UPR 3296, 91198 Gif sur Yvette Cedex, France

Abstract

ABSTRACT The fixed rabies virus (RV) strain Nishigahara kills adult mice after intracerebral inoculation, whereas the chicken embryo fibroblast cell-adapted strain Ni-CE causes nonlethal infection in adult mice. We previously reported that the chimeric CE(NiP) strain, which has the phosphoprotein (P protein) gene from the Nishigahara strain in the genetic background of the Ni-CE strain, causes lethal infection in adult mice, indicating that the P gene is responsible for the different pathogenicities of the Nishigahara and Ni-CE strains. Previous studies demonstrated that RV P protein binds to the interferon (IFN)-activated transcription factor STAT1 and blocks IFN signaling by preventing its translocation to the nucleus. In this study, we examine the molecular mechanism by which RV P protein determines viral pathogenicity by comparing the IFN antagonist activities of the Nishigahara and Ni-CE P proteins. The results, obtained from both RV-infected cells and cells transfected to express P protein only, show that Ni-CE P protein is significantly impaired for its capacity to block IFN-activated STAT1 nuclear translocation and, consequently, inhibits IFN signaling less efficiently than Nishigahara P protein. Further, it was demonstrated that a defect in the nuclear export of Ni-CE P protein correlates with a defect in its ability to cause the mislocalization of STAT1. These data provide the first evidence that the capacity of the RV P protein to inhibit STAT1 nuclear translocation and IFN signaling correlates with the viral pathogenicity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3