Norepinephrine in Combination with Antibiotic Therapy Increases both the Bacterial Replication Rate and Bactericidal Activity

Author:

Ambrose Paul G.1,VanScoy Brian D.1,Adams John1,Fikes Steven1,Bader Justin C.1,Bhavnani Sujata M.1,Rubino Christopher M.1

Affiliation:

1. Institute for Clinical Pharmacodynamics, Schenectady, New York, USA

Abstract

ABSTRACT We previously demonstrated that the rate and extent of an antimicrobial agent's bactericidal effects were coupled to the bacterial replication rate, the latter of which was modulated with the sodium chloride concentration. Herein, we describe the results from a 24-h one-compartment in vitro infection model study that was designed to demonstrate that an antimicrobial agent's bactericidal effects could be amplified when it is administered with a pharmaceutical agent that increases the bacterial replication rate. The antimicrobial and growth-promoting agents selected were levofloxacin and norepinephrine, respectively. The challenge isolate was Escherichia coli JMI 21711R (levofloxacin MIC, 8 mg/liter). Within the in vitro infection model, a human levofloxacin concentration-time profile (half-life, 7 h) was simulated and the challenge isolate was subjected to an ineffective monotherapy exposure (free-drug area under the concentration-time curve over 24 h divided by the MIC [AUC/MIC] ratio of 6) with and without norepinephrine as a continuous infusion (275 mg/liter). Samples were collected from the model during the course of the study for bacterial density determinations and drug concentration assay using liquid chromatography-tandem mass spectrometry (LC-MS/MS). As expected, the norepinephrine and no-treatment control arms failed immediately, followed by the levofloxacin monotherapy arm, which failed slowly over time. The levofloxacin-epinephrine regimen resulted in a 2-log 10 CFU reduction in bacterial density over the first 6 to 8 h of the study, which was followed by regrowth of a highly levofloxacin-resistant subpopulation (MIC, 64 mg/liter). These data demonstrate that increasing the rate of bacterial replication with a pharmaceutical product in combination with antimicrobial therapy represents an opportunity to increase the rate and magnitude of bactericidal effect.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3