Bacterial Replication Rate Modulation in Combination with Antimicrobial Therapy: Turning the Microbe against Itself

Author:

Ambrose Paul G.12,VanScoy Brian1,Conde Haley1,McCauley Jennifer1,Rubino Christopher M.12,Bhavnani Sujata M.12

Affiliation:

1. Institute for Clinical Pharmacodynamics, Schenectady, New York, USA

2. University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, New York, USA

Abstract

ABSTRACT A major clinical challenge for treating infectious diseases is the duration of antimicrobial therapy required to eradicate the pathogen. We hypothesized that modulation of the bacterial replication rate in the context of an antimicrobial exposure is coupled with the rate and extent of bactericidal effects. Herein we describe results from in vitro infection model (one compartment, 24-h model; hollow fiber, 10-day model) studies designed to probe the relationship between the bacterial replication rate and the rate and extent of bactericidal effects in the context of an effective antibiotic exposure. The bacterial replication rate was modulated by adjusting the sodium chloride concentration (0 to 8%) in the growth media (Mueller-Hinton II broth). The study drug selected was levofloxacin, and the challenge isolate was Staphylococcus aureus ATCC 29213 (levofloxacin MIC, 0.125 mg/liter). Within each in vitro infection model, human levofloxacin concentration-time profiles (half-life, 7 h) were simulated and the challenge isolate was subjected to an effective exposure (free-drug area under the concentration-time curve over 24 h divided by the MIC [AUC/MIC ratio], 65; administered as a single dose or daily for 10 days). Over the course of each study, samples were taken from each model for bacterial density determinations and drug concentration assay using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the 24-h one-compartment in vitro infection model studies, as the bacterial replication rate increased, so too did the rate (slope, 0 to 4 h) and extent (24-h CFU count per milliliter) of bacterial killing. In the 10-day hollow-fiber infection model studies, the times until a reduction of bacterial density to 1 × 10 2 CFU/ml occurred were 10 days in the media in which the challenge isolate grew slowly and approximately 2 days in the media in which the challenge isolate grew rapidly. Together, these data provide a proof of concept for new adjunctive therapeutic options with respect to the use of antimicrobial agents alone that reduce treatment durations. Such adjunctive therapies hold promise for marked reductions in the tonnage of antimicrobial agents administered to patient populations and selection pressure toward antimicrobial resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference16 articles.

1. World Health Organization. 30April2014. Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, Switzerland.

2. World Health Organization. 27March2015. Antimicrobial resistance: draft global action plan on antimicrobial resistance. World Health Organization, Geneva, Switzerland.

3. Antibacterial resistance worldwide: causes, challenges and responses

4. European Centre for Disease Prevention and Control/European Medicines Agency. September2009. Technical report. The bacterial challenge: time to react. European Centre for Disease Prevention and Control, Stockholm, Sweden, and European Medicines Agency, London, United Kingdom.

5. Antibiotic resistance—the need for global solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3