Biochemical and immunological characterization of the variant surface coat glycoprotein shed by African trypanosomes

Author:

Diffley P,Straus D C

Abstract

As the variant surface coat glycoprotein (VSG) was shed from Trypanosoma brucei rhodesiense into the blood of infected rats, it was biochemically characterized and compared with VSG that had been purified from trypanosomal homogenates. To determine if VSG was in association with lipid, membranes and lipoproteins in plasma of infected rats (IRP), VSG isolated from plasma (PVSG), and VSG isolated from trypanosomal homogenates (HVSG) were all concentrated by ultracentrifugation and assayed for the presence of VSG by radial immunodiffusion (minimum level of detection, 25 micrograms/ml) and by immunoelectroblots (minimum level of detection, 1 microgram/ml). Crimson red was used to detect lipid (minimum level of detection, 10 micrograms per sample) in electrophoresed samples. The VSG was neither concentrated with membrane or lipoprotein fractions nor stained by lipid crimson. Lipids from normal rat plasma, IRP, trypanosomal homogenates, HVSG, and PVSG were also extracted and separated by thin-layer chromatography (minimum level of detection, 20 micrograms of trypanosomal phospholipid per sample). The trypanosomal homogenates had five bands as detected by iodine vapors, of which three were phospholipids as detected by molybdenum blue. Both normal rat plasma and IRP had identical patterns of bands with a single phospholipid. The PVSG had one neutral lipid contaminant that apparently was not physically associated with the shed surface coat. The HVSG contained no lipids at all. Therefore, no evidence was obtained to implicate an association between membranes and VSG, once the latter had been shed into the blood of infected hosts. From immunoelectroblots of denatured material, it was determined that both HVSG and PVSG had the same reduced molecular weight. From molecular sieve column chromatography, however, it was determined that VSG released during the homogenization of trypanosomes is a noncovalently linked dimer, whereas that shed in the blood is apparently a trimer. This difference in native structure made no difference in immunological effect. Administered in a regimen that mimicked what the host encounters during a first peak of parasitemia, both HVSG and PVSG induced nonspecific proliferation of splenic lymphocytes and production of unelicited antibodies without the generation of nonspecific immunosuppression. This polyclonal activation of lymphocytes was not the result of contamination by exogenous pyrogen, because the activity was lost if VSG was immunologically absorbed from plasma.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3