Capping of variable antigen on Trypanosoma brucei, and its immunological and biological significance

Author:

Barry J.D.

Abstract

Pathogenic trypanosomes undergo antigenic variation, whereby the glycoprotein molecules constituting the cell coat are changed, the parasite thus evading the host's immune response. On application of homologous antiserum in indirect immunofluorescence to a given variable antigen type of Trypanosoma brucei, the surface variable antigen moves to the flagellar pocket region, which overlies the Golgi apparatus. This redistribution, or capping, is temperature-dependent, occurring at 37 degrees C but not at 0-4 degree C. Patching does not occur at either temperature. Immediately after capping no homologous or heterologous variable antigen, or host plasma or blood cell antigens, can be detected by immunofluorescence on the cell surface outside the cap; only trypanosome membrane common antigens can be found. It seems unlikely for two reasons that this antibody-induced redistribution is relevant to antigenic variation. Capping of the coat requires the indirect, rather than the direct, immunofluorescent method; a single layer of antibody, in nature, would appear to be ineffective. Also, capping of variable antigen of one type is followed within 3 h by appearance of antigen of the same, and not another, type. The necessity for 2 antibody layers is usually thought of as meaning that the individual molecules of the cell surface antigen are spaced further apart than the binding sites of an individual antibody molecule, so that the necessary cross-linked lattice cannot be formed, but on T. brucei the surface variable antigen molecules are very closely packed. It is proposed that one layer of antibody is ineffective for steric reasons; the dimensions of the exposed face of each variable antigen molecule may not permit the binding of more than one molecule of immunoglobulin, or perhaps the antigen molecules are so closely packed that most of the antigenic determinants are hidden from antibodies. To test this hypothesis, an attempt was made to cap variable antigen on trypanosomes transforming in vitro from the bloodstream to the procyclic (insect midgut) stage; such forms have a much less densely packed surface coat. Patching was observed, indicative of lattice formation, but these trypanosomes did not survive the in vitro manipulation long enough to permit any possible capping. T. brucei differs structurally from most other eukaryotic cells. It has no detectable microfilaments under the plasma membrane, except at the desmosomes in the region of flagellar binding, and it also has a pellicular cortex of microtubules. Capping of its surface antigen would appear then to differ from that on mammalian cells, either in the cellular components involved or in that specialized areas of the plasma membrane are involved.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3