CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi

Author:

Peng Duo12,Kurup Samarchith P.12,Yao Phil Y.12,Minning Todd A.12,Tarleton Rick L.12

Affiliation:

1. Center for Tropical and Emerging Global Diseases, Athens, Georgia, USA

2. Department of Cellular Biology, University of Georgia, Athens, Georgia, USA

Abstract

ABSTRACT Trypanosoma cruzi is a protozoan parasite of humans and animals, affecting 10 to 20 million people and innumerable animals, primarily in the Americas. Despite being the largest cause of infection-induced heart disease worldwide, even among the neglected tropical diseases (NTDs) T. cruzi is considered one of the least well understood and understudied. The genetic complexity of T. cruzi as well as the limited set of efficient techniques for genome engineering contribute significantly to the relative lack of progress in and understanding of this pathogen. Here, we adapted the CRISPR-Cas9 system for the genetic engineering of T. cruzi , demonstrating rapid and efficient knockout of multiple endogenous genes, including essential genes. We observed that in the absence of a template, repair of the Cas9-induced double-stranded breaks (DSBs) in T. cruzi occurs exclusively by microhomology-mediated end joining (MMEJ) with various-sized deletions. When a template for DNA repair is provided, DSB repair by homologous recombination is achieved at an efficiency several orders of magnitude higher than that in the absence of CRISPR-Cas9-induced DSBs. We also demonstrate the high multiplexing capacity of CRISPR-Cas9 in T. cruzi by knocking down expression of an enzyme gene family consisting of 65 members, resulting in a significant reduction of enzymatic product with no apparent off-target mutations. Lastly, we show that Cas9 can mediate disruption of its own coding sequence, rescuing a growth defect in stable Cas9-expressing parasites. These results establish a powerful new tool for the analysis of gene functions in T. cruzi , enabling the study of essential genes and their functions and analysis of the many large families of related genes that occupy a substantial portion of the T. cruzi genome. IMPORTANCE Trypanosoma cruzi , the causative agent of human Chagas disease, is the leading worldwide cause of infectious myocarditis. Diagnostics for the infection are relatively poor, treatment options are limited and of variable effectiveness, and suitable vaccines are nonexistent. The T. cruzi genome is replete with genes of unknown function and greatly expanded gene families with hundreds of members. The absence of facile genetic engineering tools, including RNA interference, for T. cruzi has prevented elucidation of gene and gene family function and the development of better infection prevention and control measures. In this study, we demonstrate that the CRISPR-Cas9 system is a versatile and powerful tool for genome manipulations in T. cruzi , bringing new opportunities for unraveling the functions of previously uncharacterized genes and how this human pathogen engages its large families of genes encoding surface proteins to interact with human and animal hosts.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3