Abstract
ABSTRACTIn response to perturbed DNA replication, ATR (ataxia telangiectasia and Rad3-related) kinase is activated to initiate the checkpoint signaling necessary for maintaining genome integrity and cell survival. To better understand the signaling mechanism, we carried out a large-scale genetic screen in fission yeast looking for mutants with enhanced sensitivity to hydroxyurea. From a collection of ∼370 primary mutants, we found a few mutants in which Rad3 (ATR ortholog)-mediated phospho-signaling was significantly compromised. One such mutant carried an uncharacterized mutation intel2, a gene encoding an essential and highly conserved eukaryotic protein. Previous studies in various biological models have shown that Tel2 mainly functions in Tel2-Tti1-Tti2 (TTT) complex that regulates the steady-state levels of all phosphatidylinositol 3-kinase-like protein kinases, including ATR. We show here that although the levels of Rad3 and Rad3-mediated phospho-signaling in DNA damage checkpoint were moderately reduced in thetel2mutant, the phospho-signaling in the DNA replication checkpoint was almost completely eliminated. In addition, thetel2mutation caused telomere shortening. Since the interactions of Tel2 with Tti1 and Tti2 were significantly weakened by the mutation, destabilization of the TTT complex likely contributes to the observed checkpoint and telomere defects.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献