Functions, Regulation, and Therapeutic Implications of the ATR Checkpoint Pathway

Author:

Yazinski Stephanie A.1,Zou Lee12

Affiliation:

1. Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129;

2. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115

Abstract

The ATR (ATM and rad3-related) pathway is crucial for proliferation, responding to DNA replication stress and DNA damage. This critical signaling pathway is carefully orchestrated through a multistep process requiring initial priming of ATR prior to damage, recruitment of ATR to DNA damage lesions, activation of ATR signaling, and, finally, modulation of ATR activity through a variety of post-translational modifications. Following activation, ATR functions in several vital cellular processes, including suppression of replication origin firing, promotion of deoxynucleotide synthesis and replication fork restart, prevention of double-stranded DNA break formation, and avoidance of replication catastrophe and mitotic catastrophe. In many cancers, tumor cells have increased dependence on ATR signaling for survival, making ATR a promising target for cancer therapy. Tumor cells compromised in DNA repair pathways or DNA damage checkpoints, cells reliant on homologous recombination, and cells with increased replication stress are particularly sensitive to ATR inhibition. Understanding ATR signaling and modulation is essential to unraveling which tumors have increased dependence on ATR signaling as well as how the ATR pathway can best be exploited for targeted cancer therapy.

Publisher

Annual Reviews

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3