Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus

Author:

Murakami K1,Tomasz A1

Affiliation:

1. Rockefeller University, New York, New York 10021-6399.

Abstract

A methicillin-susceptible, novobiocin-resistant strain of Staphylococcus aureus (RN2677; methicillin MIC, 0.8 micrograms/ml) was transformed with DNA prepared from highly and homogeneously methicillin-resistant S. aureus strains (methicillin MIC, greater than or equal to 400 micrograms/ml) or from heterogeneous strains in which the majority of cells had a low level of resistance (methicillin MIC, 6.3 micrograms/ml). All methicillin-resistant transformants showed low and heterogeneous resistance (methicillin MIC, 3.1 micrograms/ml) irrespective of the resistance level of DNA donors. All transformants examined produced normal amounts of the low-affinity penicillin-binding protein (PBP) 2a, and methicillin resistance and the capacity to produce PBP 2a showed the same degree of genetic linkage to the novobiocin resistance marker with both homogeneous and heterogeneous DNA donors. Next, we isolated a methicillin-susceptible mutant from a highly and homogeneously resistant strain which had a Tn551 insertion near or within the PBP 2a gene and thus did not produce PBP 2a. With this mutant used as the recipient, genetic transformation of the methicillin resistance gene was repeated with DNA isolated either from highly and homogeneously resistant strains or from heterogeneous (low-resistance) strains. All transformants obtained expressed high and homogeneous resistance and produced PBP 2a irrespective of the resistance level of the DNA donors. Our findings suggest that (i) the methicillin resistance locus is identical to the structural gene for PBP 2a, (ii) although the ability to produce PBP 2a is essential for resistance, the MICs for the majority of cells are not related to the cellular concentration of PBP 2a, and (iii) high MICs and homogeneous expression of resistance require the products of other distinct genetic elements as well.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3