Increased Expression of the Type IV Secretion System in Piliated Neisseria gonorrhoeae Variants

Author:

Salgado-Pabón Wilmara1,Du Ying2,Hackett Kathleen T.1,Lyons Katelynn M.1,Arvidson Cindy Grove2,Dillard Joseph P.1

Affiliation:

1. Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706

2. Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan 48824

Abstract

ABSTRACT Neisseria gonorrhoeae produces a type IV secretion system that secretes chromosomal DNA. The secreted DNA is active in the transformation of other gonococci in the population and may act to transfer antibiotic resistance genes and variant alleles for surface antigens, as well as other genes. We observed that gonococcal variants that produced type IV pili secreted more DNA than variants that were nonpiliated, suggesting that the process may be regulated. Using microarray analysis, we found that a piliated strain showed increased expression of the gene for the putative type IV secretion coupling protein TraD, whereas a nonpiliated variant showed increased expression of genes for transcriptional and translational machinery, consistent with its higher growth rate compared to that of the piliated strain. These results suggested that type IV secretion might be controlled by either traD expression or growth rate. A mutant with a deletion in traD was found to be deficient in DNA secretion. Further mutation and complementation analysis indicated that traD is transcriptionally and translationally coupled to traI , which encodes the type IV secretion relaxase. We were able to increase DNA secretion in a nonpiliated strain by inserting a gene cassette with a strong promoter to drive the expression of the putative operon containing traI and traD . Together, these data suggest a model in which the type IV secretion system apparatus is made constitutively, while its activity is controlled through regulation of traD and traI .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3