Global Regulation by the Yeast Spt10 Protein Is Mediated through Chromatin Structure and the Histone Upstream Activating Sequence Elements

Author:

Eriksson Peter R.1,Mendiratta Geetu1,McLaughlin Neil B.1,Wolfsberg Tyra G.2,Mariño-Ramírez Leonardo3,Pompa Tiffany A.4,Jainerin Mohendra4,Landsman David3,Shen Chang-Hui4,Clark David J.1

Affiliation:

1. Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Building 6A, Room 2A14, 6 Center Drive, Bethesda, Maryland 20892

2. National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892

3. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894

4. Department of Biology, College of Staten Island, CUNY Staten Island, Staten Island, New York 10314

Abstract

ABSTRACT The yeast SPT10 gene encodes a putative histone acetyltransferase (HAT) implicated as a global transcription regulator acting through basal promoters. Here we address the mechanism of this global regulation. Although microarray analysis confirmed that Spt10p is a global regulator, Spt10p was not detected at any of the most strongly affected genes in vivo. In contrast, the presence of Spt10p at the core histone gene promoters in vivo was confirmed. Since Spt10p activates the core histone genes, a shortage of histones could occur in spt10Δ cells, resulting in defective chromatin structure and a consequent activation of basal promoters. Consistent with this hypothesis, the spt10Δ phenotype can be rescued by extra copies of the histone genes and chromatin is poorly assembled in spt10Δ cells, as shown by irregular nucleosome spacing and reduced negative supercoiling of the endogenous 2μm plasmid. Furthermore, Spt10p binds specifically and highly cooperatively to pairs of upstream activating sequence elements in the core histone promoters [consensus sequence, (G/A)TTCCN 6 TTCNC], consistent with a direct role in histone gene regulation. No other high-affinity sites are predicted in the yeast genome. Thus, Spt10p is a sequence-specific activator of the histone genes, possessing a DNA-binding domain fused to a likely HAT domain.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3