Affiliation:
1. UMR 6061 CNRS-Université de Rennes 1, IFR 140 Faculté de Médecine, CS 34317, 35043 Rennes Cedex, France
Abstract
ABSTRACT
The polypyrimidine tract binding protein (PTB) has been described as a global repressor of regulated exons. To investigate PTB functions in a physiological context, we used a combination of morpholino-mediated knockdown and transgenic overexpression strategies in
Xenopus laevis
embryos. We show that embryonic endoderm and skin deficient in PTB displayed a switch of the α-tropomyosin pre-mRNA 3′ end processing to the somite-specific pattern that results from the utilization of an upstream 3′-terminal exon designed exon 9A9′. Conversely, somitic targeted overexpression of PTB resulted in the repression of the somite-specific exon 9A9′ and a switch towards the nonmuscle pattern. These results validate PTB as a key physiological regulator of the 3′ end processing of the α-tropomyosin pre-mRNA. Moreover, using a minigene strategy in the
Xenopus
oocyte, we show that in addition to repressing the splicing of exon 9A9′, PTB regulates the cleavage/polyadenylation of this 3′-terminal exon.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Reference47 articles.
1. Ashiya, M., and P. J. Grabowski. 1997. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA 3 : 996-1015.
2. Mechanisms of Alternative Pre-Messenger RNA Splicing
3. Brett, D., J. Hanke, G. Lehmann, S. Haase, S. Delbruck, S. Krueger, J. Reich, and P. Bork. 2000. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett. 474 : 83-86.
4. An Intronic Splicing Silencer Causes Skipping of the IIIb Exon of Fibroblast Growth Factor Receptor 2 through Involvement of Polypyrimidine Tract Binding Protein
5. Polypyrimidine Tract Binding Protein Modulates Efficiency of Polyadenylation
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献