Longer Contact Times Increase Cross-Contamination of Enterobacter aerogenes from Surfaces to Food

Author:

Miranda Robyn C.1,Schaffner Donald W.1ORCID

Affiliation:

1. Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA

Abstract

ABSTRACT Bacterial cross-contamination from surfaces to food can contribute to foodborne disease. The cross-contamination rate of Enterobacter aerogenes on household surfaces was evaluated by using scenarios that differed by surface type, food type, contact time (<1, 5, 30, and 300 s), and inoculum matrix (tryptic soy broth or peptone buffer). The surfaces used were stainless steel, tile, wood, and carpet. The food types were watermelon, bread, bread with butter, and gummy candy. Surfaces (25 cm 2 ) were spot inoculated with 1 ml of inoculum and allowed to dry for 5 h, yielding an approximate concentration of 10 7 CFU/surface. Foods (with a 16-cm 2 contact area) were dropped onto the surfaces from a height of 12.5 cm and left to rest as appropriate. Posttransfer, surfaces and foods were placed in sterile filter bags and homogenized or massaged, diluted, and plated on tryptic soy agar. The transfer rate was quantified as the log percent transfer from the surface to the food. Contact time, food, and surface type all had highly significant effects ( P < 0.000001) on the log percent transfer of bacteria. The inoculum matrix (tryptic soy broth or peptone buffer) also had a significant effect on transfer ( P = 0.013), and most interaction terms were significant. More bacteria transferred to watermelon (∼0.2 to 97%) than to any other food, while the least bacteria transferred to gummy candy (∼0.1 to 62%). Transfer of bacteria to bread (∼0.02 to 94%) was similar to transfer of bacteria to bread with butter (∼0.02 to 82%), and these transfer rates under a given set of conditions were more variable than with watermelon and gummy candy. IMPORTANCE The popular notion of the “five-second rule” is that food dropped on the floor and left there for <5 s is “safe” because bacteria need time to transfer. The rule has been explored by a single study in the published literature and on at least two television shows. Results from two academic laboratories have been shared through press releases but remain unpublished. We explored this topic by using four different surfaces (stainless steel, ceramic tile, wood, and carpet), four different foods (watermelon, bread, bread with butter, and gummy candy), four different contact times (<1, 5, 30, and 300 s), and two bacterial preparation methods. Although we found that longer contact times result in more transfer, we also found that other factors, including the nature of the food and the surface, are of equal or greater importance. Some transfer takes place “instantaneously,” at times of <1 s, disproving the five-second rule.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference41 articles.

1. Foodborne Illness Acquired in the United States—Major Pathogens

2. Gould LH Walsh KA Vieira AR Herman K Williams IT Hall AJ Cole D. 2013. Surveillance for foodborne disease outbreaks—United States 1998–2008. MMWR Surveill Summ 62:1–34. http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6202a1.htm.

3. Centers for Disease Control and Prevention (CDC). 2013. Surveillance for foodborne disease outbreaks—United States 2009–2010. Morb Mortal Wkly Rep 62:41–47. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6203a1.htm.

4. Centers for Disease Control and Prevention (CDC). 2013. Surveillance for foodborne disease outbreaks—United States 2011: annual report. Centers for Disease Control and Prevention Atlanta GA. http://www.cdc.gov/foodsafety/pdfs/foodborne-disease-outbreaks-annual-report-2011-508c.pdf.

5. Centers for Disease Control and Prevention (CDC). 2014. Surveillance for foodborne disease outbreaks—United States 2012: annual report. Centers for Disease Control and Prevention Atlanta GA. http://www.cdc.gov/foodsafety/pdfs/foodborne-disease-outbreaks-annual-report-2012-508c.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3