The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner

Author:

van Belkum M J1,Kok J1,Venema G1,Holo H1,Nes I F1,Konings W N1,Abee T1

Affiliation:

1. Department of Genetics, University of Groningen, Haren, The Netherlands.

Abstract

Lactococcin A is a bacteriocin produced by Lactococcus lactis. Its structural gene has recently been cloned and sequenced (M. J. van Belkum, B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema, Appl. Environ. Microbiol. 57:492-498, 1991). Purified lactococcin A increased the permeability of the cytoplasmic membrane of L. lactis and dissipated the membrane potential. A significantly higher concentration of lactococcin A was needed to dissipate the membrane potential in an immune strain of L. lactis. Lactococcin A at low concentrations (0.029 microgram/mg of protein) inhibited secondary and phosphate-bond driven transport of amino acids in sensitive cells and caused efflux of preaccumulated amino acids. Accumulation of amino acids by immune cells was not affected by this concentration of lactococcin A. Lactococcin A also inhibited proton motive force-driven leucine uptake and leucine counterflow in membrane vesicles of the sensitive strain but not in membrane vesicles of the immune strain. These observations indicate that lactococcin A makes the membrane permeable for leucine in the presence or absence of a proton motive force and that the immunity factor(s) is membrane linked. Membrane vesicles of Clostridium acetobutylicum, Bacillus subtilis, and Escherichia coli were not affected by lactococcin A, nor were liposomes derived from phospholipids of L. lactis. These results indicate that lactococcin A acts on the cytoplasmic membrane and is very specific towards lactococci. The combined results obtained with cells, vesicles, and liposomes suggest that the specificity of lactococcin A may be mediated by a receptor protein associated with the cytoplasmic membrane.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3