Lactococcus lactis mutants resistant to lactococcin A and garvicin Q reveal missense mutations in the sugar transport domain of the mannose phosphotransferase system

Author:

van Belkum Marco J.1ORCID,Aleksandrzak-Piekarczyk Tamara2ORCID,Lamer Tess1,Vederas John C.1

Affiliation:

1. Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada

2. Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS) , Warsaw, Poland

Abstract

ABSTRACT Lactococcin A is a bacteriocin from Lactococcus lactis that permeabilizes the membrane of sensitive lactococcal cells and requires the presence of the membrane-bound components IIC and IID of the mannose phosphotransferase system (man-PTS). Recently, it was reported through cryo-electron microscopy analyses of man-PTS and several bacteriocins fused to a maltose-binding protein, including lactococcin A, that these bacteriocins create pores by inserting themselves between the Core and Vmotif domains of man-PTS. In our study, we obtained a dozen spontaneous mutants of L. lactis IL1403 resistant to lactococcin A. All but one of the mutants of IL1403 have mutations located in the genes encoding the IIC or IID proteins. These mutations also resulted in resistance to garvicin Q, a bacteriocin from Lactococcus garvieae with a broad inhibition spectrum and very little sequence homology to lactococcin A. Missense mutations were found in the sugar transport domain of man-PTS of bacteriocin-resistant IL1403 mutants, which also impeded the uptake of mannose. When lactococcin A, garvicin Q, or pediocin PA-1, an anti-listerial bacteriocin, were fused to a maltose-binding protein, we observed reduced or no antibacterial activity. Taken together, the precise mechanism of action of bacteriocins using the man-PTS remains to be fully understood. IMPORTANCE Many bacteriocins target the sugar transporter mannose phosphotransferase system (man-PTS) to exert their antibacterial activity. The elucidation in recent years of the structure of man-PTS has facilitated our understanding of how bacteriocins might interact with the receptor and which domains of the transporter are involved in bacteriocin resistance. Here, we show that missense mutations in the sugar-binding domain of the man-PTS not only impede the uptake of sugars but also prevent the antibacterial activity of the bacteriocins lactococcin A and garvicin Q.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3