Conversion of Oxacillin-Resistant Staphylococci from Heterotypic to Homotypic Resistance Expression

Author:

Finan J. E.1,Rosato A. E.2,Dickinson T. M.1,Ko D.3,Archer Gordon L.12

Affiliation:

1. Departments of Medicine

2. Microbiology/Immunology

3. Biostatistics, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia

Abstract

ABSTRACT Staphylococci that acquire the mecA gene are usually resistant to β-lactam antibiotics (methicillin or oxacillin resistance). mecA encodes a penicillin-binding protein (PBP 2a) that has a reduced affinity for β-lactams. In some isolates with methicillin or oxacillin resistance, only a small proportion (≤0.1%) of the population expresses resistance to ≥10 μg of oxacillin per ml (heterotypic resistance [HeR]), while in other isolates most of the population expresses resistance (homotypic resistance [HoR]). In the present study, growth of Staphylococcus aureus or Staphylococcus epidermidis strains with HeR in concentrations of oxacillin (0.3 to 0.7 μg/ml) that produced a fall or a lag in optical density converted the strains from the HeR to the HoR phenotype. The conversion from the HeR to the HoR phenotype appeared to be due to the selection of a highly resistant mutant population, as determined by fluctuation analysis and the failure of populations with HoR to revert to HeR after 60 generations of growth in antibiotic-free media. The frequencies of conversion were as high as 10 −3 to 10 −2 . Conversion to HoR required an intact mecA gene and an increase in the level of mecA transcription since no highly resistant subpopulation could be selected after growth in oxacillin when mecA transcription was constitutively repressed or when mecA had been inactivated. In addition, in both S. epidermidis and S. aureus the level of resistance to vancomycin, which also acts directly on the staphylococcal cell wall, was greater among convertants with HoR than their isogenic parents. The conversion of a population from HeR to HoR involves the selection of a mutation(s) that occurs at a high frequency and most likely requires abundant PBP 2a.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3