Thin Aggregative Fimbriae and Cellulose Enhance Long-Term Survival and Persistence of Salmonella

Author:

White A. P.1,Gibson D. L.2,Kim W.1,Kay W. W.2,Surette M. G.13

Affiliation:

1. Department of Microbiology and Infectious Diseases

2. Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada

3. Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1

Abstract

ABSTRACT Salmonella spp. are environmentally persistent pathogens that have served as one of the important models for understanding how bacteria adapt to stressful conditions. However, it remains poorly understood how they survive extreme conditions encountered outside their hosts. Here we show that the rdar morphotype, a multicellular phenotype characterized by fimbria- and cellulose-mediated colony pattern formation, enhances the resistance of Salmonella to desiccation. When colonies were stored on plastic for several months in the absence of exogenous nutrients, survival of wild-type cells was increased compared to mutants deficient in fimbriae and/or cellulose production. Differences between strains were further highlighted upon exposure to sodium hypochlorite, as cellulose-deficient strains were 1,000-fold more susceptible. Measurements of gene expression using luciferase reporters indicated that production of thin aggregative fimbriae (Tafi) may initiate formation of colony surface patterns characteristic of the rdar morphotype. We hypothesize that Tafi play a role in the organization of different components of the extracellular matrix. Conservation of the rdar morphotype among pathogenic S. enterica isolates and the survival advantages that it provides collectively suggest that this phenotype could play a role in the transmission of Salmonella between hosts.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3