Salmonella enterica Serovar Typhimurium DT104 Displays a Rugose Phenotype

Author:

Anriany Yuda A.1,Weiner Ronald M.1,Johnson Judith A.2,De Rezende Christian E.1,Joseph Sam W.1

Affiliation:

1. Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742,1 and

2. Veterans Affairs Maryland Health Care System, Baltimore, Maryland 212012

Abstract

ABSTRACT Rugose phenotypes, such as those observed in Vibrio cholerae , have increased resistance to chlorine, oxidative stress, and complement-mediated killing. In this study we identified and defined a rugose phenotype in Salmonella enterica serovar Typhimurium DT104 and showed induction only on certain media at 25°C after 3 days of incubation. Incubation at 37°C resulted in the appearance of the smooth phenotype. Observation of the ultrastructure of the rugose form and a stable smooth variant (Stv), which was isolated following a series of passages of the rugose cells, revealed extracellular substances only in cells from the rugose colony. Observation of the extracellular substance by scanning electron microscopy (SEM) was correlated with the appearance of corrugation during development of rugose colony morphology over a 4-day incubation period at 25°C. In addition, the cells also formed a pellicle in liquid broth, which was associated with the appearance of interlacing slime and fibrillar structures, as observed by SEM. The pellicle-forming cells were completely surrounded by capsular material, which bound cationic ferritin, thus indicating the presence of an extracellular anionic component. The rugose cells, in contrast to Stv, showed resistance to low pH and hydrogen peroxide and an ability to form biofilms. Based on these results and analogy to the rugose phenotype in V. cholerae , we propose a possible role for the rugose phenotype in the survival of S. enterica serovar Typhimurium DT104.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3