Global Adaptations Resulting from High Population Densities in Escherichia coli Cultures

Author:

Liu XueQiao1,Ng Christina1,Ferenci Thomas1

Affiliation:

1. Department of Microbiology, University of Sydney, Sydney, New South Wales, 2006, Australia

Abstract

ABSTRACT The scope of population density effects was investigated in steady-state continuous cultures of Escherichia coli in the absence of complications caused by transient environmental conditions and growth rates. Four distinct bacterial properties reflecting major regulatory and physiological circuits were analyzed. The metabolome profile of bacteria growing at high density contained major differences from low-density cultures. The 10-fold-elevated level of trehalose at higher densities pointed to the increased role of the RpoS sigma factor, which controls trehalose synthesis genes as well as the general stress response. There was an eightfold difference in RpoS levels between bacteria grown at 10 8 and at 10 9 cells/ml. In contrast, the cellular content of the DNA binding protein H-NS, controlling many genes in concert with RpoS, was decreased by high density. Since H-NS and RpoS also influence porin gene expression, the influence of population density on the intricate regulation of outer membrane composition was also investigated. High culture densities were found to strongly repress ompF porin transcription, with a sharp threshold at a density of 4.4 × 10 8 cells/ml, while increasing the proportion of OmpC in the outer membrane. The density-dependent regulation of ompF was maintained in rpoS or hns mutants and so was independent of these regulators. The consistently dramatic changes indicate that actively growing, high-density cultures are at least as differentiated from low-density cultures as are exponential- from stationary-phase bacteria.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3