Inactivation of gltB Abolishes Expression of the Assimilatory Nitrate Reductase Gene ( nasB ) in Pseudomonas putida KT2442

Author:

Eberl Leo1,Ammendola Aldo1,Rothballer Michael H.1,Givskov Michael2,Sternberg Claus2,Kilstrup Mogens2,Schleifer Karl-Heinz1,Molin Søren2

Affiliation:

1. Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany,1 and

2. Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Copenhagen, Denmark2

Abstract

ABSTRACT By using mini-Tn 5 transposon mutagenesis, random transcriptional fusions of promoterless bacterial luciferase, luxAB , to genes of Pseudomonas putida KT2442 were generated. Insertion mutants that responded to ammonium deficiency by induction of bioluminescence were selected. The mutant that responded most strongly was genetically analyzed and is demonstrated to bear the transposon within the assimilatory nitrate reductase gene ( nasB ) of P. putida KT2442. Genetic evidence as well as sequence analyses of the DNA regions flanking nasB suggest that the genes required for nitrate assimilation are not clustered. We isolated three second-site mutants in which induction of nasB expression was completely abolished under nitrogen-limiting conditions. Nucleotide sequence analysis of the chromosomal junctions revealed that in all three mutants the secondary transposon had inserted at different sites in the gltB gene of P. putida KT2442 encoding the major subunit of the glutamate synthase. A detailed physiological characterization of the gltB mutants revealed that they are unable to utilize a number of potential nitrogen sources, are defective in the ability to express nitrogen starvation proteins, display an aberrant cell morphology under nitrogen-limiting conditions, and are impaired in the capacity to survive prolonged nitrogen starvation periods.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3