Integration and Excision of a Bacteroides Conjugative Transposon, CTnDOT

Author:

Cheng Qi1,Paszkiet Brian J.1,Shoemaker Nadja B.1,Gardner Jeffrey F.1,Salyers Abigail A.1

Affiliation:

1. Department of Microbiology, University of Illinois, Urbana, Illinois 61801

Abstract

ABSTRACT Bacteroides conjugative transposons (CTns) are thought to transfer by first excising themselves from the chromosome to form a nonreplicating circle, which is then transferred by conjugation to a recipient. Earlier studies showed that transfer of most Bacteroides CTns is stimulated by tetracycline, but it was not known which step in transfer is regulated. We have cloned and sequenced both ends of the Bacteroides CTn, CTnDOT, and have used this information to examine excision and integration events. A segment of DNA that contains the joined ends of CTnDOT and an adjacent open reading frame (ORF), intDOT , was necessary and sufficient for integration into the Bacteroides chromosome. Integration of this miniature form of the CTn was not regulated by tetracycline. Excision of CTnDOT and formation of the circular intermediate were detected by PCR, using primers designed from the end sequences. Sequence analysis of the PCR products revealed that excision and integration involve a 5-bp coupling sequence-type mechanism possibly similar to that used by CTn Tn 916 , a CTn found originally in enterococci. PCR analysis also demonstrated that excision is a tetracycline-regulated step in transfer. The integrated minielement containing intDOT and the ends of CTnDOT did not excise, nor did a larger minielement that also contained an ORF located immediately downstream of intDOT designated orf2 . Thus, excision involves other genes besides intDOT and orf2 . Both intDOT and orf2 were disrupted by single-crossover insertions. Analysis of the disruption mutants showed that intDOT was essential for excision but orf2 was not. Despite its proximity to the integrase gene, orf2 appears not to be essential for excision.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3