Abstract
Cells of Staphylococcus aureus heated at 52 degrees C in magnesium-chelating buffers [pH 7.2, 50 mM potassium phosphate or 50 mM tris(hydroxymethyl)-aminomethane containing 1 mM ethylenediaminetetraacetic acid] leaked 260-nm absorbing material, shown to be RNA, and suffered destruction of their ribosomes. These cells did not regain their salt tolerance when repair was carried out in the presence of actinomycin D (5 microgram/ml). Cells similarly heated in magnesium-conserving buffers [pH 7.2, 50 mM tris(hydroxymethyl)aminomethane containing 10 mM MgCl2 or piperazine buffer] did not leak RNA, suffered no ribosomal damage when heated for 15 min, and recovered, at least partially, in the presence of actinomycin D. Ribosomal damage, is therefore, a consequence of Mg2+ loss and is not an effect of heat per se. Cells suspended in either Mg2+-chelating or Mg2+-conserving buffers lost salt tolerance to about the same extent during heating at 52 degrees C. Therefore, sublethal heat injury can not be attributed to ribosomal damage.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献