Biochemical and Genetic Investigation of Initial Reactions in Aerobic Degradation of the Bile Acid Cholate in Pseudomonas sp. Strain Chol1

Author:

Birkenmaier Antoinette1,Holert Johannes1,Erdbrink Henrike1,Moeller Heiko M.2,Friemel Anke2,Schoenenberger René3,Suter Marc J.-F.3,Klebensberger Janosch1,Philipp Bodo1

Affiliation:

1. University of Konstanz, Department of Biology, Microbial Ecology, Konstanz, Germany

2. University of Konstanz, Department of Chemistry, Konstanz, Germany

3. Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland

Abstract

ABSTRACT Bile acids are surface-active steroid compounds with toxic effects for bacteria. Recently, the isolation and characterization of a bacterium, Pseudomonas sp. strain Chol1, growing with bile acids as the carbon and energy source was reported. In this study, initial reactions of the aerobic degradation pathway for the bile acid cholate were investigated on the biochemical and genetic level in strain Chol1. These reactions comprised A-ring oxidation, activation with coenzyme A (CoA), and β-oxidation of the acyl side chain with the C 19 -steroid dihydroxyandrostadienedione as the end product. A-ring oxidizing enzyme activities leading to Δ 1,4 -3-ketocholyl-CoA were detected in cell extracts and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cholate activation with CoA was demonstrated in cell extracts and confirmed with a chemically synthesized standard by LC-MS/MS. A transposon mutant with a block in oxidation of the acyl side chain accumulated a steroid compound in culture supernatants which was identified as 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) by nuclear magnetic resonance spectroscopy. The interrupted gene was identified as encoding a putative acyl-CoA-dehydrogenase (ACAD). DHOPDC activation with CoA in cell extracts of strain Chol1 was detected by LC-MS/MS. The growth defect of the transposon mutant could be complemented by the wild-type ACAD gene located on the plasmid pBBR1MCS-5. Based on these results, the initiating reactions of the cholate degradation pathway leading from cholate to dihydroxyandrostadienedione could be reconstructed. In addition, the first bacterial gene encoding an enzyme for a specific reaction step in side chain degradation of steroid compounds was identified, and it showed a high degree of similarity to genes in other steroid-degrading bacteria.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3