Effects of Sporulation Conditions on the Germination and Germination Protein Levels of Bacillus subtilis Spores

Author:

Ramirez-Peralta Arturo1,Zhang Pengfei2,Li Yong-qing2,Setlow Peter1

Affiliation:

1. Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut, USA

2. Department of Physics, East Carolina University, Greenville, North Carolina, USA

Abstract

ABSTRACT Bacillus subtilis spores prepared in rich medium germinated faster with nutrient germinants than poor-medium spores as populations in liquid and multiple individual spores on a microscope slide. Poor-medium spores had longer average lag times between mixing of spores with nutrient germinants and initiation of Ca-dipicolinic acid (CaDPA) release. Rich-medium spores made at 37°C germinated slightly faster with nutrient germinants than 23°C spores in liquid, but not when spores germinated on a slide. The difference in germination characteristics of these spore populations in liquid was paralleled by changes in expression levels of a transcriptional lacZ fusion to the gerA operon, encoding a germinant receptor (GR). Levels of GR subunits were 3- to 8-fold lower in poor-medium spores than rich-medium spores and 1.6- to 2-fold lower in 23°C spores than 37°C spores, and levels of the auxiliary germination protein GerD were 3.5- to 4-fold lower in poor medium and 23°C spores. In contrast, levels of another likely germination protein, SpoVAD, were similar in all these spores. These different spores germinated similarly with CaDPA, and poor-medium and 23°C spores germinated faster than rich-medium and 37°C spores, respectively, with dodecylamine. Since spore germination with CaDPA and dodecylamine does not require GerD or GRs, these results indicate that determinants of rates of nutrient germination of spores prepared differently are primarily the levels of the GRs that bind nutrient germinants and trigger germination and secondarily the levels of GerD.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3