SARS-CoV-2 within-host diversity of human hosts and its implications for viral immune evasion

Author:

Xi Binbin1ORCID,Zeng Xi1,Chen Zixi1,Zeng Jiong1,Huang Lizhen1,Du Hongli1

Affiliation:

1. School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China

Abstract

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving, bringing great challenges to the control of the virus. In the present study, we investigated the characteristics of SARS-CoV-2 within-host diversity of human hosts and its implications for immune evasion using about 2,00,000 high-depth next-generation genome sequencing data of SARS-CoV-2. A total of 44% of the samples showed within-host variations (iSNVs), and the average number of iSNVs in the samples with iSNV was 1.90. C-to-U is the dominant substitution pattern for iSNVs. C-to-U/G-to-A and A-to-G/U-to-C preferentially occur in 5′-CG-3′ and 5′-AU-3′ motifs, respectively. In addition, we found that SARS-CoV-2 within-host variations are under negative selection. About 15.6% iSNVs had an impact on the content of the CpG dinucleotide (CpG) in SARS-CoV-2 genomes. We detected signatures of faster loss of CpG-gaining iSNVs, possibly resulting from zinc-finger antiviral protein-mediated antiviral activities targeting CpG, which could be the major reason for CpG depletion in SARS-CoV-2 consensus genomes. The non-synonymous iSNVs in the S gene can largely alter the S protein’s antigenic features, and many of these iSNVs are distributed in the amino-terminal domain (NTD) and receptor-binding domain (RBD). These results suggest that SARS-CoV-2 interacts actively with human hosts and attempts to take different evolutionary strategies to escape human innate and adaptive immunity. These new findings further deepen and widen our understanding of the within-host evolutionary features of SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the coronavirus disease 2019, has evolved rapidly since it was discovered. Recent studies have pointed out that some mutations in the SARS-CoV-2 S protein could confer SARS-CoV-2 the ability to evade the human adaptive immune system. In addition, it is observed that the content of the CpG dinucleotide in SARS-CoV-2 genome sequences has decreased over time, reflecting the adaptation to the human host. The significance of our research is revealing the characteristics of SARS-CoV-2 within-host diversity of human hosts, identifying the causes of CpG depletion in SARS-CoV-2 consensus genomes, and exploring the potential impacts of non-synonymous within-host variations in the S gene on immune escape, which could further deepen and widen our understanding of the evolutionary features of SARS-CoV-2.

Funder

the Key R&D Program of Guangdong Province

the National Key R&D Program of China

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3