Yeast silencers can act as orientation-dependent gene inactivation centers that respond to environmental signals

Author:

Shei G J1,Broach J R1

Affiliation:

1. Department of Molecular Biology, Princeton University, New Jersey 08544, USA.

Abstract

The mating-type loci located at the ends of chromosome III in Saccharomyces cerevisiae are transcriptionally repressed by a region-specific but sequence-nonspecific silencing apparatus, mediated by cis-acting silencer sequences. Previous deletion analyses have defined the locations and organizations of the silencers in their normal context and have shown that they are composed of various combinations of replication origins and binding sites for specific DNA-binding proteins. We have evaluated what organization of silencer sequences is sufficient for establishing silencing at a novel location, by inserting individual silencers next to the MAT locus and then assessing expression of MAT. The results of this analysis indicate that efficient silencing can be achieved by inserting either a single copy of the E silencer from HMR or multiple, tandem copies of either the E or I silencer from HML. These results indicate that while all silencers are functionally equivalent, they have different efficiencies; HMR E is more active than HML E, which itself is more active than HML I. Both HMR E and HML E exhibit orientation-dependent silencing, and the particular organization of binding elements within the silencer domain is critical for function. In some situations, silencing of MAT is conditional: complete silencing is obtained when cells are grown on glucose, and complete derepression occurs when cells are shifted to a nonfermentable carbon source, a process mediated in part by the RAS/cyclic AMP signaling pathway. Finally, the E silencer from HMR is able to reestablish repression immediately upon a shift back to glucose, while the silencers from HML exhibit a long lag in reestablishing repression, thus indicating distinctions between the two silencers in their reestablishment capacities. These results demonstrate that silencers can serve as nonspecific gene inactivation centers and that the attendant silencing can be rendered responsive to potential developmental cues.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3