Quantitative analysis of Histone modifications in gene silencing

Author:

Wu Kenneth,Dhillon Namrita,Du Kelvin,Kamakaka Rohinton T.ORCID

Abstract

AbstractGene silencing in budding yeast is mediated by Sir protein binding to unacetylated nucleosomes to form a chromatin structure that inhibits transcription. This transcriptional silencing is characterized by the high-fidelity transmission of the silent state. Despite its relative stability, the constituent parts of the silent state are in constant flux giving rise to a model that silent loci can tolerate such fluctuations without functional consequences. However, the level of tolerance is unknown and we developed a method to measure the threshold of histone acetylation that causes the silent chromatin state to switch to the active state. We show that loss of silencing required between 50% and 75% of the unacetylated histones to be replaced with acetylated histone mimics. The precise levels of unacetylated nucleosomes required varied from locus to locus and was influenced by both silencer strength and UAS enhancer/promoter strength. Simple calculations suggest that an approximately 50% reduction in the ability of acetylases to acetylate individual nucleosomes across a large domain may be sufficient to generate a transcriptionally silent region in the nucleus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3