Structure-related inhibitory effect of antimicrobial enoxacin and derivatives on theophylline metabolism by rat liver microsomes

Author:

Mizuki Y1,Fujiwara I1,Yamaguchi T1,Sekine Y1

Affiliation:

1. Department of Pharmacokinetics, Dainippon Pharmaceutical Co., Ltd., Osaka, Japan.

Abstract

Enoxacin, an antimicrobial fluoroquinolone with a 7-piperazinyl-1, 8-naphthyridine skeleton, is a potent inhibitor of cytochrome P-450-mediated theophylline metabolism. The present study was designed to clarify, using seven enoxacin derivatives, the molecular characteristics of the fluoroquinolone responsible for the inhibition. Three derivatives with methyl-substituted 7-piperazine rings inhibited rat liver microsomal theophylline metabolism to 1,3-dimethyluric acid to an extent similar to that of enoxacin (50% inhibitory concentrations [IC50s] = 0.39 to 0.48 mM). 7-Piperazinyl-quinoline derivatives, 8-hydroenoxacin (8-Hy) and 1-cyclopropyl-8-fluoroenoxacin (8-F1), which have a hydrogen and a fluorine at position 8, respectively, more weakly inhibited metabolite formation (IC50s = 0.88 and 1.29 mM, respectively). Little inhibition (IC50 > 2 mM) was observed in those with 3'-carbonyl and 4'-N-acetyl groups on the piperazine rings. The substrate-induced difference spectra demonstrated that the affinities of enoxacin, 8-Hy, and 8-F1 to cytochrome P-450 were parallel with their inhibitory activities. The substituent at position 8 was found to determine the molecular conformations of the fluoroquinolones, and the planarity in molecular shape decreased in the same order as the inhibitory activity (enoxacin > 8-Hy > 8-F1). Moreover, the 3'-carbonyl and 4'-N-acetyl groups decreased the basicity of their vicinal 4'-nitrogen atoms when judged from their electrostatic potentials, which showed a remarkably broadened negative charge around the nitrogens. As a result, the planarity of the whole molecule and the basicity of the 4'-nitrogen atom of enoxacin are likely to be dominant factors in the inhibition of theophylline metabolism by cytochrome P-450.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference35 articles.

1. The structure of silver pefloxacin, an antibiotic related to nalidixic acid;Baenzinger N. C.;Acta Crystallogr.,1986

2. The Cambridge Structural Database. 1995. Cambridge Crystallographic Data Centre Cambridge United Kingdom.

3. Biotransformation of caffeine, paraxanthine, theophylline and theobromine by polyaromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes;Campbell M. E.;Drug Metab. Dispos.,1987

4. Imidazole, the ligand trans to mercaptide in ferric cytochrome P-450;Chevion M.;J. Biol. Chem.,1977

5. Cromer D. T. and J. T. Waber. 1974. International tables for X-ray crystallography vol. IV Table 2.2 A. The Kynoch Press Birmingham England.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3