1. Andreea Deac , Yu-Hsiang Huang , Petar Velivc ković , Pietro Liò, and Jian Tang. 2019 . Drug-drug adverse effect prediction with graph co-attention. arXiv preprint arXiv:1905.00534 (2019). https://doi.org/10.48550/ARXIV.1905.00534 10.48550/ARXIV.1905.00534 Andreea Deac, Yu-Hsiang Huang, Petar Velivc ković, Pietro Liò, and Jian Tang. 2019. Drug-drug adverse effect prediction with graph co-attention. arXiv preprint arXiv:1905.00534 (2019). https://doi.org/10.48550/ARXIV.1905.00534
2. Computational prediction of drug-drug interactions based on drugs functional similarities
3. Justin Gilmer , Samuel S. Schoenholz , Patrick F. Riley , Oriol Vinyals , and George E. Dahl . 2017 . Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning , Vol. 70 . PMLR, 1263--1272. https://proceedings.mlr.press/v70/gilmer17a.html Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning, Vol. 70. PMLR, 1263--1272. https://proceedings.mlr.press/v70/gilmer17a.html
4. INDI: a computational framework for inferring drug interactions and their associated recommendations
5. Thomas N Kipf and Max Welling . 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 ( 2016 ). https://doi.org/10.48550/ARXIV.1609.02907 10.48550/ARXIV.1609.02907 Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016). https://doi.org/10.48550/ARXIV.1609.02907