HlyB-dependent secretion of hemolysin by uropathogenic Escherichia coli requires conserved sequences flanking the chromosomal hly determinant

Author:

Cross M A1,Koronakis V1,Stanley P L1,Hughes C1

Affiliation:

1. Department of Pathology, Cambridge University, England.

Abstract

The synthesis and secretion of hemolysin (HlyA) by Escherichia coli are governed by four contiguous genes (hlyCABD) that are closely conserved on plasmids and, among human pathogenic strains, on the chromosome. We have previously shown that in plasmid pHly152 the coexpressed synthesis and export functions are uncoupled by intraoperon transcription termination, which is in turn alleviated by antitermination dictated in cis by a region upstream of the hly operon. In this study we describe an analogous region of ca. 1,100 base pairs flanking the chromosomal hly determinant of the uropathogenic strain E. coli 2001. This region had no significant effect on intracellular levels of hemolysin but activated strongly, both in cis and in trans, the specific hlyB-hlyD-dependent hemolysin secretion function. The secretion-activating region increased the transcription of the secretion gene hlyB, but the transcription effect was not as pronounced as that seen in the pHly152 determinant and was not evident when the region was present in trans to the hemolysin genes, suggesting that, in addition to transcriptional activation, the region may possibly exert a secondary posttranscriptional influence. Southern hybridizations with the 1,100-base pairs secretion-activating sequence showed low identity to plasmid pHly152 and no identity with total DNA from nonhemolytic uropathogenic E. coli or hemolytic isolates of Proteus vulgaris, Proteus mirabilis, and Morganella morganii. In contrast, hybridization to total DNA from hemolytic E. coli isolates belonging to different serotypes showed strong conservation of the activating sequence, indicating that it is an integral component of the chromosomal hly determinant that is widespread among uropathogenic E. coli.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3