Affiliation:
1. Division of Infectious Diseases, Department of Internal Medicine
2. Center for the Study of Emerging and Re-emerging Pathogens
3. Department of Microbiology and Molecular Genetics, University of Texas Medical School
4. Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030
Abstract
ABSTRACT
Enterococcus faecalis
, a common cause of endocarditis and known for its capacity to transfer antibiotic resistance to other pathogens, has recently emerged as an important, multidrug-resistant nosocomial pathogen. However, knowledge of its lineages and the potential of particular clones of this species to disseminate and cause disease is limited. Using a nine-gene multilocus sequence typing (MLST) scheme, we identified an evolving and widespread clonal complex of
E. faecalis
that has caused outbreaks and life-threatening infections. Moreover, this unusual clonal complex was found to contain isolates of unexpected relatedness, including the first known U.S. vancomycin-resistant enterococcus (
E. faecalis
strain V583), the first known penicillinase-producing (Bla
+
)
E. faecalis
isolate, and the previously described widespread clone of penicillinase producers, a trait found in <0.1% of
E. faecalis
isolates. All members of this clonal cluster (designated as BVE for Bla
+
Van
r
endocarditis) were found to contain a previously described putative pathogenicity island (PAI). Further analysis of this PAI demonstrated its dissemination worldwide, albeit with considerable variability, confirmed its association with clinical isolates, and found a common insertion site in different clonal lineages. PAI deletions, MLST, and the uncommon resistances were used to predict the evolution of the BVE clonal cluster. The finding of a virulent and highly successful clonal complex of
E. faecalis
with different members resistant to the primary therapies of choice, ampicillin and vancomycin, has important implications for the evolution of virulence and successful lineages and for public health monitoring and control.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献