Efficacy of ampicillin-sulbactam is not dependent upon maintenance of a critical ratio between components: sulbactam pharmacokinetics in pharmacodynamic interactions

Author:

Alexov M1,Lister P D1,Sanders C C1

Affiliation:

1. Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA.

Abstract

An in vitro pharmacokinetic model (IVPM) and a mouse model of lethal bacteremia were used to compare the pharmacodynamics of ampicillin-sulbactam when the two components were dosed simultaneously and in sequence against TEM-1-producing Escherichia coli. The challenge isolates included three strains of E. coli producing various levels of beta-lactamase. Human pharmacokinetics of ampicillin-sulbactam (1.5- and 3.0-g intravenous doses) were simulated in each model, and pharmacodynamic interactions were evaluated over one 6-h dosing interval. Against all three strains, the sequential dosing of sulbactam prior to ampicillin did not alter the pharmacodynamics of these combinations from comparison with results obtained with the simultaneous administration of the two components. Similar pharmacodynamics were observed for the two dosing regimens regardless of the ampicillin-sulbactam dose used or whether the bacteria were treated in an immunocompetent mouse or in the absence of immune defenses in the IVPM. When antibacterial activity was lost and regrowth of the inoculum was observed, viable bacterial counts increased in both the simultaneous and sequential regimens at a point when sulbactam levels fell below a critical concentration. These data suggest that the efficacy of ampicillin-sulbactam is not dependent upon the maintenance of a constant 2:1 ratio for the two components. Rather, the efficacy of ampicillin-sulbactam appears to be dependent upon the maintenance of one or both components above a critical concentration. Furthermore, the pharmacokinetics of sulbactam, specifically, how long sulbactam levels remain above a minimum critical concentration, appears to dictate how long antibacterial activity is maintained with the combination.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3