Abstract
Mutants of Pseudomonas aeruginosa were isolated that were acetamide-negative in growth phenotype at 41 degrees C and constitutive for amidase synthesis at 28 degrees C. Two mutants were derived from the magno-constitutive amidase mutant PAC111 (C11), and a third from a mutant that had enhanced inducibility by formamide, PAC153 (F6). The three temperature-sensitive mutants produced amidases with the same thermal stabilities as the wild-type enzyme. Cultures growing exponentially at 28 degrees C, synthesizing amidase constitutively, ceased amidase synthesis almost immediately on transfer to 41 degrees C. Cultures growing at 41 degrees C were transferred to 28 degrees C and had a lag of about 0.5 of a generation before amidase synthesis became detectable. Pulse-heating for 10 min at 45 degrees C of a culture growing exponentially at 28 degrees C resulted in a lag of about 0.5 of a generation before amidase synthesis recommenced after returning to 28 degrees C. Acetamide-negative mutants that were unable to synthesize amidase at any growth temperature were isolated from an inducible strain producing the mutant B amidase PAC398 (IB10). Two mutants were examined that gave revertants producing B amidase but with novel regulatory phenotypes. It is suggested that amidase synthesis is regulated by positive control exerted by gene amiR.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献