High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature

Author:

Nemecek-Marshall M1,LaDuca R1,Fall R1

Affiliation:

1. Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215.

Abstract

Attempts were made to maximize the expression of ice nuclei in Pseudomonas syringae T1 isolated from a tomato leaf. Nutritional starvation for nitrogen, phosphorous, sulfur, or iron but not carbon at 32 degrees C, coupled to a shift to 14 to 18 degrees C, led to the rapid induction of type 1 ice nuclei (i.e., ice nuclei active at temperatures warmer than -5 degrees C). Induction was most pronounced in stationary-phase cells that were grown with sorbitol as the carbon source and cooled rapidly, and under optimal conditions, the expression of type 1 ice nuclei increased from < 1 per 10(7) cells (i.e., not detectable) to 1 in every cell in 2 to 3 h. The induction was blocked by protein and RNA synthesis inhibitors, indicative of new gene expression. Pulse-labeling of nongrowing cultures with [35S]methionine after a shift to a low temperature demonstrated that the synthesis of a new set of "low-temperature" proteins was induced. Induced ice nuclei were stable at a low temperature, with no loss in activity at 4 degrees C after 8 days, but after a shift back to 32 degrees C, type 1 ice nuclei completely disappeared, with a half-life of approximately 1 h. Repeated cycles of low-temperature induction and high-temperature turnover of these ice nuclei could be demonstrated with the same nongrowing cells. Not all P. syringae strains from tomato or other plants were fully induced under the same culture conditions as strain T1, but all showed increased expression of type 1 ice nuclei after the shift to the low temperature. In support of this view, analysis of the published DNA sequence preceding the translational start site of the inaZ gene (R. L. Green and G. Warren, Nature [London] 317:645-648, 1985) suggests the presence of a gearbox-type promoter (M. Vincente, S. R. Kushner, T. Garrido, and M. Aldea, Mol. Microbiol. 5:2085-2091, 1991).

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3