Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis

Author:

Fall R R,Brown J L,Schaeffer T L

Abstract

Experiments were carried out to construct pseudomonad strains capable of the biodegradation of certain recalcitrant branched hydrocarbons via a combination of alkane and citronellol degradative pathways. To promote the metabolism of the recalcitrant hydrocarbon 2,6-dimethyl-2-octene we transferred the OCT plasmid to Pseudomonas citronellolis, a pseudomonad containing the citronellol pathway. This extended the n-alkane substrate range of the organism, but did not permit utilization of the branched hydrocarbon even in the presence of a gratuitous inducer of the OCT plasmid. In a separate approach n-decane-utilizing (Dec+) mutants of P. citronellolis were selected and found to be constitutive for the expression of medium- to long-chain alkane oxidation. The Dec+ mutants were capable of degradation of 2,6-dimethyl-2-octene via the citronellol pathway as shown by (i) conversion of the hydrocarbon to citronellol, determined by gas-liquid chromatography-mass spectrometry, (ii) induction of geranyl-coenzyme A carboxylase, a key enzyme of the citronellol pathway, and (iii) demonstration of beta-decarboxymethylation of the hydrocarbon by whole cells. The Dec+ mutants had also acquired the capacity to metabolize other recalcitrant branched hydrocarbons such as 3,6-dimethyloctane and 2,6-dimethyldecane. These studies demonstrate how enzyme recruitment can provide a pathway for the biodegradation of otherwise recalcitrant branched hydrocarbons.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrocarbon Degradation and Enzyme Activities of Aspergillus oryzae and Mucor irregularis Isolated from Nigerian Crude Oil-Polluted Sites;Microorganisms;2020-11-30

2. Inhibition of the pqsABCDE and pqsH in the pqs quorum sensing system and related virulence factors of the Pseudomonas aeruginosa PAO1 strain by farnesol;International Biodeterioration & Biodegradation;2020-07

3. Microbial Ecology of Naphthenic Acid (NA) Degradation;Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology;2019

4. Microbial Ecology of Naphthenic Acid (NA) Degradation;Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology;2018-09-25

5. Finished Genome Sequence of a Polyurethane-Degrading Pseudomonas Isolate;Genome Announcements;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3