An Intramolecular Association between Two Domains of the Protein Kinase Fused Is Necessary for Hedgehog Signaling

Author:

Ascano Manuel12,Robbins David J.13

Affiliation:

1. Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover

2. Department of Molecular Genetics, Graduate Program, University of Cincinnati Medical Center, Cincinnati, Ohio

3. Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire

Abstract

ABSTRACT The protein kinase Fused (Fu) is an integral member of the Hedgehog (Hh) signaling pathway. Although genetic studies demonstrate that Fu is required for the regulation of the Hh pathway, the mechanistic role that it plays remains largely unknown. Given our difficulty in developing an in vitro kinase assay for Fu, we reasoned that the catalytic activity of Fu might be highly regulated. Several mechanisms are known to regulate protein kinases, including self-association in either an intra- or an intermolecular fashion. Here, we provide evidence that Hh regulates Fu through intramolecular association between its kinase domain (ΔFu) and its carboxyl-terminal domain (Fu-tail). We show that ΔFu and Fu-tail can interact in trans , with or without the kinesin-related protein Costal 2 (Cos2). However, since the majority of Fu is found associated with Cos2 in vivo, we hypothesized that Fu-tail, which binds Cos2 directly, would be able to tether ΔFu to Cos2. We demonstrate that ΔFu colocalizes with Cos2 in the presence of Fu-tail and that this colocalization occurs on a subset of membrane vesicles previously characterized to be important for Hh signal transduction. Additionally, expression of Fu-tail in fu mutant flies that normally express only the kinase domain rescues the fu wing phenotype. Therefore, reestablishing the association between these two domains of Fu in trans is sufficient to restore Hh signal transduction in vivo. In such a manner we validate our hypothesis, demonstrating that Fu self-associates and is functional in an Hh-dependent manner. Our results here enhance our understanding of one of the least characterized, yet critical, components of Hh signal transduction.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3